Copied to
clipboard

G = C7×C42⋊C2order 224 = 25·7

Direct product of C7 and C42⋊C2

direct product, metabelian, nilpotent (class 2), monomial, 2-elementary

Aliases: C7×C42⋊C2, C421C14, C4⋊C46C14, (C2×C28)⋊9C4, (C2×C4)⋊4C28, (C4×C28)⋊2C2, C4.9(C2×C28), C28.46(C2×C4), C22⋊C4.3C14, C22.5(C2×C28), C23.6(C2×C14), C2.3(C22×C28), (C22×C4).4C14, C14.38(C4○D4), (C22×C28).14C2, (C2×C28).79C22, C14.31(C22×C4), (C2×C14).72C23, C22.6(C22×C14), (C22×C14).25C22, (C7×C4⋊C4)⋊15C2, C2.1(C7×C4○D4), (C2×C14).22(C2×C4), (C2×C4).14(C2×C14), (C7×C22⋊C4).6C2, SmallGroup(224,152)

Series: Derived Chief Lower central Upper central

C1C2 — C7×C42⋊C2
C1C2C22C2×C14C2×C28C7×C22⋊C4 — C7×C42⋊C2
C1C2 — C7×C42⋊C2
C1C2×C28 — C7×C42⋊C2

Generators and relations for C7×C42⋊C2
 G = < a,b,c,d | a7=b4=c4=d2=1, ab=ba, ac=ca, ad=da, bc=cb, dbd=bc2, cd=dc >

Subgroups: 92 in 76 conjugacy classes, 60 normal (16 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C7, C2×C4, C2×C4, C23, C14, C14, C14, C42, C22⋊C4, C4⋊C4, C22×C4, C28, C28, C2×C14, C2×C14, C2×C14, C42⋊C2, C2×C28, C2×C28, C22×C14, C4×C28, C7×C22⋊C4, C7×C4⋊C4, C22×C28, C7×C42⋊C2
Quotients: C1, C2, C4, C22, C7, C2×C4, C23, C14, C22×C4, C4○D4, C28, C2×C14, C42⋊C2, C2×C28, C22×C14, C22×C28, C7×C4○D4, C7×C42⋊C2

Smallest permutation representation of C7×C42⋊C2
On 112 points
Generators in S112
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)(57 58 59 60 61 62 63)(64 65 66 67 68 69 70)(71 72 73 74 75 76 77)(78 79 80 81 82 83 84)(85 86 87 88 89 90 91)(92 93 94 95 96 97 98)(99 100 101 102 103 104 105)(106 107 108 109 110 111 112)
(1 91 35 102)(2 85 29 103)(3 86 30 104)(4 87 31 105)(5 88 32 99)(6 89 33 100)(7 90 34 101)(8 75 18 57)(9 76 19 58)(10 77 20 59)(11 71 21 60)(12 72 15 61)(13 73 16 62)(14 74 17 63)(22 68 111 55)(23 69 112 56)(24 70 106 50)(25 64 107 51)(26 65 108 52)(27 66 109 53)(28 67 110 54)(36 79 48 92)(37 80 49 93)(38 81 43 94)(39 82 44 95)(40 83 45 96)(41 84 46 97)(42 78 47 98)
(1 50 47 74)(2 51 48 75)(3 52 49 76)(4 53 43 77)(5 54 44 71)(6 55 45 72)(7 56 46 73)(8 103 107 79)(9 104 108 80)(10 105 109 81)(11 99 110 82)(12 100 111 83)(13 101 112 84)(14 102 106 78)(15 89 22 96)(16 90 23 97)(17 91 24 98)(18 85 25 92)(19 86 26 93)(20 87 27 94)(21 88 28 95)(29 64 36 57)(30 65 37 58)(31 66 38 59)(32 67 39 60)(33 68 40 61)(34 69 41 62)(35 70 42 63)
(1 35)(2 29)(3 30)(4 31)(5 32)(6 33)(7 34)(8 25)(9 26)(10 27)(11 28)(12 22)(13 23)(14 24)(15 111)(16 112)(17 106)(18 107)(19 108)(20 109)(21 110)(36 48)(37 49)(38 43)(39 44)(40 45)(41 46)(42 47)(50 70)(51 64)(52 65)(53 66)(54 67)(55 68)(56 69)(57 75)(58 76)(59 77)(60 71)(61 72)(62 73)(63 74)(78 91)(79 85)(80 86)(81 87)(82 88)(83 89)(84 90)(92 103)(93 104)(94 105)(95 99)(96 100)(97 101)(98 102)

G:=sub<Sym(112)| (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70)(71,72,73,74,75,76,77)(78,79,80,81,82,83,84)(85,86,87,88,89,90,91)(92,93,94,95,96,97,98)(99,100,101,102,103,104,105)(106,107,108,109,110,111,112), (1,91,35,102)(2,85,29,103)(3,86,30,104)(4,87,31,105)(5,88,32,99)(6,89,33,100)(7,90,34,101)(8,75,18,57)(9,76,19,58)(10,77,20,59)(11,71,21,60)(12,72,15,61)(13,73,16,62)(14,74,17,63)(22,68,111,55)(23,69,112,56)(24,70,106,50)(25,64,107,51)(26,65,108,52)(27,66,109,53)(28,67,110,54)(36,79,48,92)(37,80,49,93)(38,81,43,94)(39,82,44,95)(40,83,45,96)(41,84,46,97)(42,78,47,98), (1,50,47,74)(2,51,48,75)(3,52,49,76)(4,53,43,77)(5,54,44,71)(6,55,45,72)(7,56,46,73)(8,103,107,79)(9,104,108,80)(10,105,109,81)(11,99,110,82)(12,100,111,83)(13,101,112,84)(14,102,106,78)(15,89,22,96)(16,90,23,97)(17,91,24,98)(18,85,25,92)(19,86,26,93)(20,87,27,94)(21,88,28,95)(29,64,36,57)(30,65,37,58)(31,66,38,59)(32,67,39,60)(33,68,40,61)(34,69,41,62)(35,70,42,63), (1,35)(2,29)(3,30)(4,31)(5,32)(6,33)(7,34)(8,25)(9,26)(10,27)(11,28)(12,22)(13,23)(14,24)(15,111)(16,112)(17,106)(18,107)(19,108)(20,109)(21,110)(36,48)(37,49)(38,43)(39,44)(40,45)(41,46)(42,47)(50,70)(51,64)(52,65)(53,66)(54,67)(55,68)(56,69)(57,75)(58,76)(59,77)(60,71)(61,72)(62,73)(63,74)(78,91)(79,85)(80,86)(81,87)(82,88)(83,89)(84,90)(92,103)(93,104)(94,105)(95,99)(96,100)(97,101)(98,102)>;

G:=Group( (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70)(71,72,73,74,75,76,77)(78,79,80,81,82,83,84)(85,86,87,88,89,90,91)(92,93,94,95,96,97,98)(99,100,101,102,103,104,105)(106,107,108,109,110,111,112), (1,91,35,102)(2,85,29,103)(3,86,30,104)(4,87,31,105)(5,88,32,99)(6,89,33,100)(7,90,34,101)(8,75,18,57)(9,76,19,58)(10,77,20,59)(11,71,21,60)(12,72,15,61)(13,73,16,62)(14,74,17,63)(22,68,111,55)(23,69,112,56)(24,70,106,50)(25,64,107,51)(26,65,108,52)(27,66,109,53)(28,67,110,54)(36,79,48,92)(37,80,49,93)(38,81,43,94)(39,82,44,95)(40,83,45,96)(41,84,46,97)(42,78,47,98), (1,50,47,74)(2,51,48,75)(3,52,49,76)(4,53,43,77)(5,54,44,71)(6,55,45,72)(7,56,46,73)(8,103,107,79)(9,104,108,80)(10,105,109,81)(11,99,110,82)(12,100,111,83)(13,101,112,84)(14,102,106,78)(15,89,22,96)(16,90,23,97)(17,91,24,98)(18,85,25,92)(19,86,26,93)(20,87,27,94)(21,88,28,95)(29,64,36,57)(30,65,37,58)(31,66,38,59)(32,67,39,60)(33,68,40,61)(34,69,41,62)(35,70,42,63), (1,35)(2,29)(3,30)(4,31)(5,32)(6,33)(7,34)(8,25)(9,26)(10,27)(11,28)(12,22)(13,23)(14,24)(15,111)(16,112)(17,106)(18,107)(19,108)(20,109)(21,110)(36,48)(37,49)(38,43)(39,44)(40,45)(41,46)(42,47)(50,70)(51,64)(52,65)(53,66)(54,67)(55,68)(56,69)(57,75)(58,76)(59,77)(60,71)(61,72)(62,73)(63,74)(78,91)(79,85)(80,86)(81,87)(82,88)(83,89)(84,90)(92,103)(93,104)(94,105)(95,99)(96,100)(97,101)(98,102) );

G=PermutationGroup([[(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56),(57,58,59,60,61,62,63),(64,65,66,67,68,69,70),(71,72,73,74,75,76,77),(78,79,80,81,82,83,84),(85,86,87,88,89,90,91),(92,93,94,95,96,97,98),(99,100,101,102,103,104,105),(106,107,108,109,110,111,112)], [(1,91,35,102),(2,85,29,103),(3,86,30,104),(4,87,31,105),(5,88,32,99),(6,89,33,100),(7,90,34,101),(8,75,18,57),(9,76,19,58),(10,77,20,59),(11,71,21,60),(12,72,15,61),(13,73,16,62),(14,74,17,63),(22,68,111,55),(23,69,112,56),(24,70,106,50),(25,64,107,51),(26,65,108,52),(27,66,109,53),(28,67,110,54),(36,79,48,92),(37,80,49,93),(38,81,43,94),(39,82,44,95),(40,83,45,96),(41,84,46,97),(42,78,47,98)], [(1,50,47,74),(2,51,48,75),(3,52,49,76),(4,53,43,77),(5,54,44,71),(6,55,45,72),(7,56,46,73),(8,103,107,79),(9,104,108,80),(10,105,109,81),(11,99,110,82),(12,100,111,83),(13,101,112,84),(14,102,106,78),(15,89,22,96),(16,90,23,97),(17,91,24,98),(18,85,25,92),(19,86,26,93),(20,87,27,94),(21,88,28,95),(29,64,36,57),(30,65,37,58),(31,66,38,59),(32,67,39,60),(33,68,40,61),(34,69,41,62),(35,70,42,63)], [(1,35),(2,29),(3,30),(4,31),(5,32),(6,33),(7,34),(8,25),(9,26),(10,27),(11,28),(12,22),(13,23),(14,24),(15,111),(16,112),(17,106),(18,107),(19,108),(20,109),(21,110),(36,48),(37,49),(38,43),(39,44),(40,45),(41,46),(42,47),(50,70),(51,64),(52,65),(53,66),(54,67),(55,68),(56,69),(57,75),(58,76),(59,77),(60,71),(61,72),(62,73),(63,74),(78,91),(79,85),(80,86),(81,87),(82,88),(83,89),(84,90),(92,103),(93,104),(94,105),(95,99),(96,100),(97,101),(98,102)]])

C7×C42⋊C2 is a maximal subgroup of
C42⋊Dic7  C28.2C42  (C2×C28).Q8  C28.(C2×Q8)  C4⋊C4.233D14  C28.5C42  C28.45(C4⋊C4)  C42.43D14  C42.187D14  C4⋊C436D14  C4.(C2×D28)  C4⋊C4.236D14  (C2×C4).47D28  C424D14  (C2×D28)⋊13C4  C42.87D14  C42.88D14  C42.89D14  C42.90D14  C427D14  C42.188D14  C42.91D14  C428D14  C429D14  C42.92D14  C4210D14  C42.93D14  C42.94D14  C42.95D14  C42.96D14  C42.97D14  C42.98D14  C42.99D14  C42.100D14  C4○D4×C28
C7×C42⋊C2 is a maximal quotient of
C22⋊C4×C28  C4⋊C4×C28

140 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E···4N7A···7F14A···14R14S···14AD28A···28X28Y···28CF
order12222244444···47···714···1414···1428···2828···28
size11112211112···21···11···12···21···12···2

140 irreducible representations

dim11111111111122
type+++++
imageC1C2C2C2C2C4C7C14C14C14C14C28C4○D4C7×C4○D4
kernelC7×C42⋊C2C4×C28C7×C22⋊C4C7×C4⋊C4C22×C28C2×C28C42⋊C2C42C22⋊C4C4⋊C4C22×C4C2×C4C14C2
# reps1222186121212648424

Matrix representation of C7×C42⋊C2 in GL3(𝔽29) generated by

100
0160
0016
,
1700
0127
0128
,
100
0170
0017
,
100
0280
0281
G:=sub<GL(3,GF(29))| [1,0,0,0,16,0,0,0,16],[17,0,0,0,1,1,0,27,28],[1,0,0,0,17,0,0,0,17],[1,0,0,0,28,28,0,0,1] >;

C7×C42⋊C2 in GAP, Magma, Sage, TeX

C_7\times C_4^2\rtimes C_2
% in TeX

G:=Group("C7xC4^2:C2");
// GroupNames label

G:=SmallGroup(224,152);
// by ID

G=gap.SmallGroup(224,152);
# by ID

G:=PCGroup([6,-2,-2,-2,-7,-2,-2,672,697,266]);
// Polycyclic

G:=Group<a,b,c,d|a^7=b^4=c^4=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d=b*c^2,c*d=d*c>;
// generators/relations

׿
×
𝔽